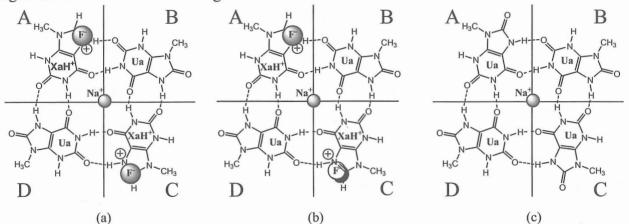
Neutral or positively charged new purine base tetramer structures: a computational study of xanthine and uric acid derivatives

Gábor Paragi¹, <u>Lajos Kovács</u>², Zoltán Kupihár², Botond Penke¹, Celia Fonseca Guerra³ and F. Matthias Bickelhaupt³


¹ Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of Sciences at the University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary

² Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary ³ Department of Theoretical Chemistry, Free University of Amsterdam, De Boelelaan 1083

NL-1081 HV Amsterdam, The Netherlands

(kovacs@ovrisc.mdche.u-szeged.hu)

New tetramer structures, based on 9-methylxanthine (Xa),¹ 9-methylxanthine protonated at N7 (XaH⁺) and 9-methyluric acid (Ua), were investigated by high level density functional calculations. We have found that homo- and heterotetrads can be formed by low barrier hydrogen bond possessing positive charges $[(XaH⁺)_4, (XaH⁺-Xa)_2, (XaH⁺-Ua)_2,]$. Systems with zero charge $[(Xa)_4, (Xa-Ua)_2, (Ua)_4]$ were also constructed, investigated and compared to guanine quadruplex $[(G)_4]$. It was shown that the new tetramers can bind cations and anions without the necessity of stacking interactions. Application of the calculated systems in higher ordered structures (*e.g.* quadruplexes)² are very promising with or without intercalating ions. The Figure and Table display fragment interaction energies for tetrads with intercalating ions.

fragment interaction energies [kcal/mol]	(AB+Na ⁺)+ + (CD)	(AD+Na ⁺)+ + (BC)	$(AC+Na^{+}) +$ + (BD)	(ABCD)+ + Na ⁺
$(XaH^+ - F^ Ua)_2 + Na^+$ F ⁻ ions on the same side, (a)	-62.13	-61.86	-77.32	-97.93
$(XaH^+ - F^ Ua)_2 + Na^+$ F ⁻ ions on the opposite sides, (b)	-62.24	-62.04	-77.59	-97.80
$(Ua)_4 + Na^+, (c)$	-60.50	-60.50	-79.75	-92.05
(G) ₄ +Na ⁺	-90.71	-90.71	-109.22	-110.40

References:

1. Davis J. T. and Spada G. P., Chem. Soc. Rev., 36, 296-313 (2007).

2. Kulikowska E., Kierdaszuk B. and Shugar D., Acta Biochim. Pol., 51, 493-531 (2004).

Acknowledgements: The financial support of grant OTKA 73672 and University of Szeged are gratefully acknowledged.